Answer:
-20
Step-by-step explanation:
Hi
The value of the expression is a decimal -17.33.
What is an expression?An expression is a way of writing a statement with more than two variables or numbers with operations such as addition, subtraction, multiplication, and division.
Example: 2 + 3x + 4y = 7 is an expression.
We have,
0.3x = -5 - (-0.4 - (-0.6))
0.3x = -5 - (-0.4 + 0.6)
0.3x = -5 - 0.2
0.3x = -5.2
x = -5.2/0.3
x = -17.33
Thus,
The value of x is -17.33.
Learn more about expressions here:
https://brainly.com/question/3118662
#SPJ2
Select all the equations where b=11 is a solution.
Answer:
D, C,.
Step-by-step explanation:
Which of the following is not protected by the FDIC?
a.
Safety deposit boxes
b.
Savings accounts
c.
Checking accounts
d.
Certificates of Deposit (“CDs”)
The account which is not protected by the FDIC is Checking Account. Thus option 3rd is correct.
What are the 3 types of savings?The three kinds of saving accounts are regular deposits, money markets, and Certificates of Deposits. There is a difference in all three types in terms of accessibility and amount of interest.
The Checking account is defined as the account which carries the day-to-day transactions of money. Which ensures easy access to money.
Most people generally use a debit card or checks to make purchases. Thus option 3rd is correct.
Learn more about Certificate of Deposits here:
brainly.com/question/13803892
#SPJ1
Answer:
A. Safety deposit boxes
Step-by-step explanation:
I did it right
. suppose a population was normally distributed with a mean of 10 and standard deviation of 2. what proportion of the scores are below 12.5? explain your answer with reasoning.
The proportion of scores that are below 12.5 is 0.8944 or 89.44%.
Given that the population is normally distributed with a mean of 10 and a standard deviation of 2, we can calculate the proportion of scores below 12.5 using the z-score formula.
z = (x - μ) / σwhere x = 12.5, μ = 10, and σ = 2.
Substituting these values into the formula, we get:
z = (12.5 - 10) / 2z = 1.25
We must find the area under the standard normal distribution curve to the left of z = 1.25. This area represents the proportion of scores that are below 12.5.
We can use a standard normal distribution table or calculator to find this area. Using a standard normal distribution table, the area to the left of z = 1.25 is 0.8944.
Therefore, the proportion of scores below 12.5 is 0.8944 or 89.44%.
To know more about the z-score formula, visit:
brainly.com/question/29266737
#SPJ11
what is the volume of a rectangular prism with a length of 2 2/3 inches, width of 1/2 inchs, and a height of 5/6 inches
Step-by-step explanation:
volume = length ×width ×height
volume = (8/3) inches × (1/2) Inches × (5/6) inches
volume =(8/6) cubic inches ×(1/2) inches
volume = 4/3 cubic inches
Answer:
10/9 in³
Step-by-step explanation:
2 2/3 = (2 X 3 + 2) / 3 = 8/3.
Volume of prism = area of cross-section X length
= (8/3) X (1/2) X (5/6)
= (8 X 1 X 5)/ (3 X 2 X 6)
= 40/36
= 10/9 in³
A triangle has two sides of length 1 and 4. What is the largest possible whole-number length
for the third side?
Using the triangle inequality theorem, the largest possible whole-number length for the third side is 4.
How to Apply the Triangle Inequality Theorem to Find the Length of the Third Side of a Triangle?The third side of a triangle must be shorter than the sum of the other two sides and longer than the difference between the other two sides.
So, for a triangle with sides of length 1, 4, and x (where x is the length of the third side), we have:
1 + 4 > x
4 + x > 1
1 + x > 4
Simplifying these inequalities, we get:
5 > x
x > 3
x > -3 (this inequality is always true)
The largest possible whole-number length for the third side is 4, since it is the largest integer that satisfies the above inequalities.
Learn more about the triangle inequality theorem on:
https://brainly.com/question/309896
#SPJ1
which number is bigger than the other? -0.75 or -5/4!! Please help!
Answer:
-0.75
Step-by-step explanation:
-0.75 or -5/4
-0.75 or -1.25
-0.75 is bigger because it has a greater value.... it is closer to zero, on a number line.
Find the value of x? LESSON Measuring Angles and Arcs Explain your reason
Answer:
50
Step-by-step explanation:
Sum of angles in a circle is 360,
145 + 165 + x = 360
310 + x = 360
x = 360 - 310
x = 50
help asap!!! it’s due in 20 minutes .
Answer:
ab
Step-by-step explanation:
What is 2/3 - 5 4/5
Answer:
The answer is 5 2/15.
Step-by-step explanation:
Well, you just do 4/5 - 2/3 then add 5 as the whole number.
Find the volume of this cylinder. Use 3 for a.14 ftV = 7r2h=9 ftVV ~ [?]ft3
The formula for the Volume(V) of the cylinder is given as,
\(V=\pi r^2h\)Given:
\(\begin{gathered} \pi=3 \\ r=14ft \\ h=9ft \end{gathered}\)Therefore,
\(\begin{gathered} V=3\times14^2\times9=3\times196\times9=5292ft^3 \\ \therefore V=5292ft^3 \end{gathered}\)Hence, the volume of the cylinder is
\(5292ft^3\)The American Medical Association reported: "During the first hour after using cocaine, the user's risk of heart attack increases nearly 24 times. The average (mean) age of people in the study who suffered heart attacks soon after using cocaine was only 44. That's about 17 years younger than the average heart attack patient. Of the 38 cocaine users who had heart attacks, 29 had no prior symptoms of heart disease." Assume that the standard deviation of the age of people who suffered heart attacks soon after using cocaine was 10 years. In a random sample of size 49, what is the probability the mean age at heart attack after using cocaine is greater than 42?
A. 0.4207
B. 0.5793
C. 0.0808
D. 0.9192
The probability the mean age at heart attack after using cocaine is greater than 42 is 0.9192. Hence, the correct option is D. 0.9192.
The standard deviation of the age of people who suffered heart attacks soon after using cocaine was 10 years. In a random sample of size 49, what is the probability the mean age at heart attack after using cocaine is greater than 42?We are given the following details:
The mean age of people in the study who suffered heart attacks soon after using cocaine was only 44.
Standard deviation = 10
Sample size = 49
Now we need to find the z-score using the formula:
z = (x - μ) / (σ / √n)
wherez is the z-score
x is the value to be standardized
μ is the mean
σ is the standard deviation
n is the sample size.
Substitute the values in the formula as given,
z = (42 - 44) / (10 / √49)z = -2 / (10/7)
z = -1.4
Probability of z > -1.4 can be found using the standard normal distribution table or calculator.
P(z > -1.4) = 0.9192
Therefore, the probability the mean age at heart attack after using cocaine is greater than 42 is 0.9192. Hence, the correct option is D. 0.9192.
Learn more about probability here:
https://brainly.com/question/31828911
#SPJ11
the sum of a five-term arithmetic sequence is 100. if all terms are positive integers, what is the smallest possible value for a term?
The smallest possible value for a term in the five-term arithmetic sequence is 1.The sum of a five-term arithmetic sequence is given as 100 and all terms are positive integers. Let's call the first term "a" and the common difference "d".
The five terms can be represented as a, a + d, a + 2d, a + 3d, and a + 4d. The sum of these five terms is 100, which can be represented as:
a + (a + d) + (a + 2d) + (a + 3d) + (a + 4d) = 100
Simplifying the expression, we get:
5a + 10d = 100
Dividing both sides by 5, we get:
a + 2d = 20
Since all terms are positive integers, it follows that "a" and "d" must also be positive integers. The smallest possible value for "a" is 1, and the smallest possible value for "d" is 1. Substituting these values into the expression for "a + 2d" yields:
1 + 2 * 1 = 3
Thus, the smallest possible value for a term in the five-term arithmetic sequence is 1.
Find out more about arithmetic sequence
brainly.com/question/13276388
#SPJ4
lect all that apply which of the following statements describe the poisson distribution? select all that apply multiple select question. the probability of the event is proportional to the interval size. the probability of an individual event occurring is quite large. the intervals do not overlap and are independent. the random variable is the number of occurrences during an interval.
The Poisson distribution is a probability distribution that describes the number of independent occurrences of an event in a fixed interval of time or space.
In this case, the random variable is the number of occurrences during an interval. Therefore, the statement "the random variable is the number of occurrences during an interval" applies to the Poisson distribution. Another statement that applies to the Poisson distribution is "the probability of the event is proportional to the interval size". This means that the probability of observing k events in a fixed interval is proportional to the length of the interval. However, the statement "the probability of an individual event occurring is quite large" does not describe the Poisson distribution. In fact, the Poisson distribution assumes that the probability of an individual event occurring is small, but the number of events is large. Finally, the statement "the intervals do not overlap and are independent" is not a defining characteristic of the Poisson distribution, although it is often assumed in practical applications. In summary, the Poisson distribution is a probability distribution that models the number of independent occurrences of an event in a fixed interval. The probability of the event is proportional to the interval size, and the random variable is the number of occurrences during an interval.
Learn more about probability here
https://brainly.com/question/29610001
#SPJ11
The population of a town is decreasing at a rate of 2% per
year. In 2000 there were 1600 people.
a) Write an exponential decay function to model this situation.
b) Then find the population in 2008.
please help me, Thank you
Answer:
1362
Step-by-step explanation:
so
A=1600(1-0.02)^8
A = total population after 8 years
1600 = initial amount of people
0.02 = percent in decimal
8 = years after 2000
1- = decay
which hill's criteria, addressing whether the exposure comes before or after the effect, is the only criteria that must be met 100% for a causal relationship to be possible?
Hill's Criteria of Strength is the only criteria that must be met 100% for a causal relationship to be possible.
The Criteria of strength is Hill's first test for causation. He stated that the likelihood of an association being causative increases with the size of the connection between exposure and disease. Hill used Percival Pott's investigation into the prevalence of scrotal cancer in chimney sweeps to highlight this issue. Since the correlation between that occupation and sickness was so strong (almost 200 times more than in other jobs), it was concluded that chimney soot was probably a contributing factor. On the other hand, Hill argued that minor connections are less indicative of causation since they are more likely to be explained by other underlying factors (such as bias or confounding).
To evaluate possibly causative associations, it is essential to define what is meant by a "strong" correlation. Scientists may now distinguish between strong and weak associations using more mathematically sound criteria than Hill had in mind because of developments in statistical theory and computing capacity. Strength is no longer just understood as an association's magnitude. Furthermore, multi-factorial disorders and the existence of determinant risk variables that are tiny in magnitude but statistically significant have received more attention from researchers. The recognized standard for determining the strength of an observed correlation and, hence, its potential causation, is statistical significance today rather than the magnitude of the association.
To read more about Strength visit https://brainly.com/question/2367767
#SPJ4
Soledad buys 5 ounces of frozen yogurt for $2.25. What is the unit price of the frozen yogurt in dollars per ounce?
Answer:
0.45
Step-by-step explanation:
You divided 2.25 by 5
You poured some 6% alcohol solution and some 8% alcohol solution into a mixing container. Now you have 600 grams of 7.4% alcohol solution. Write and solve a system of equations to find how many grams of 6% solution and how many grams of 8% solution you poured into the mixing container.
You mixed ___ grams of 6% solution with ____grams of 8% solution.
Answer:
180 grams of 6%420 grams of 8%Step-by-step explanation:
Let s and e represent the grams of 6% and 8% solution, respectively. The given relations can be described by ...
s + e = 600 . . . . . you have 600 grams of mixture
0.06s +0.08e = 0.074(600) . . . . grams of alcohol in the mixture
__
The first equation can give an expression for s that substitutes nicely into the second equation:
s = 600 -e
0.06(600 -e) +0.08e = 0.074(600) . . . . substitute for s
0.02e = 0.014(600) . . . . . . subtract 0.06(600)
e = 420 . . . . . . . divide by 0.02
s = 600 -420 = 180
You mixed 180 grams of 6% solution with 420 grams of 8% solution.
Answer: 180 grams of 6% solution with 420 grams of 8% solution.
Step-by-step explanation:
Let x and y be the weight (in grams) of 6% and 8% alcohol solution. Since the total weight is 600 grams, therefore,
\($$\Rightarrow x+y=600 \ldots \text { (1) }\)
Using the statement given, we can write the following equation:
\(\Rightarrow 6 x+8 y=(7.4)(600)\\ \Rightarrow 6 x+8 y=4440 \text {... (2) }\)
Substitute the value of y from equation (1) into equation (2), we'll get:
\(\begin{gathered}\Rightarrow 6 x+8(600-x)=4440 \\\Rightarrow 6 x+4800-8 x=4440 \\\Rightarrow 2 x=360 \\\Rightarrow x=180\end{gathered}\)
Therefore,
\(\Rightarrow y=600-180=420\)
Therefore, you mixed 180 grams of 6% solution with 420 grams of 8% solution.
What is the sum?
X
3
2
+
X+3 x+3 x+3
O
+
colch
53
X+5
X+3
X+5
3x+27
6x
X+3
The outcome or result of adding two or more integers is known as the SUM.
What is a sum?The outcome of adding numbers or quantities mathematically is a summation, often known as a sum. A summation always has an even number of terms in it. There may be just two terms, or there may be 100, 1000, or even a million. Some summations include an infinite number of terms.
the sum of two or more numbers, magnitudes, quantities, or specifics as determined by or as though decided by the addition process in mathematics.
The outcome of adding two or more numbers, objects, or things is referred to in mathematics as the sum.
The result or solution we obtain from adding two or more integers is known as the SUM. Addends are the figures that are combined.
\(Simplify $\frac{x}{x+3}+\frac{3}{x+3}+\frac{2}{x+3}: \frac{x+5}{x+3}$Steps$$\frac{x}{x+3}+\frac{3}{x+3}+\frac{2}{x+3}$$Apply the fraction rule: $\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}$$$=\frac{x+3+2}{x+3}$$Add the numbers: $3+2=5$$$=\frac{x+5}{x+3}$$\)
Therefore, the correct answer is option b) \($=\frac{x+5}{x+3}$\)
To learn more about sum refer to:
https://brainly.com/question/25734188
#SPJ1
the rental is 50 dollars and $15 per minute. If mia has $155, how many minutes can she rent the game set. Use an equation to find the answer
Answer:
Mia can rent the game set for 7 minutes
Step-by-step explanation:
(50)+(15×7)
Calculate the approximate probability that the total number of tickets given out during a 5-day week is between 195 and 275.
The approximate probability that the total number of tickets given out during a 5-day week is between 195 and 275 is 0.8804 or 88.04%.
We need to know the mean and standard deviation of the distribution to calculate the approximate probability that the total number of tickets given out during a 5-day week is between 195 and 275.
Let's assume that the mean number of tickets given out per day is 50 and the standard deviation is 10 (these are just hypothetical values).
The total number of tickets given out during a 5-day week follows a normal distribution with mean 250 (= 5 days x 50 tickets per day) and standard deviation of the square root of 500 (= 5 days x 10²).
To find the probability that the total number of tickets given out during a 5-day week is between 195 and 275, we need to standardize the values using the z-score formula: z = (x - μ) / σ, where x is the observed value, μ is the mean, and σ is the standard deviation.
For x = 195: z = (195 - 250) / sqrt(500) = -2.46
For x = 275: z = (275 - 250) / sqrt(500) = 1.56
Using a calculator, the probability that z is between -2.46 and 1.56 is approximately 0.8804.
To know more about probability, refer here:
https://brainly.com/question/12629667#
#SPJ11
Which answer is the best estimate of the correlation coefficient for the variables in the scatter plot?
Which graph represents a function 20 points
Answer:
the one on the bottom row is that graph that represents a function.
Step-by-step explanation:
what is the answer to
-6+n=6
How do you solve it
Answer:
n=12
Step-by-step explanation:
-6+n=6
n=6+6
n=12
What are the roots of the equation?
10x2 - 6x + 4 = -3x
Answer:
(3 +/- i*sqrt(151) / 20 (no real solutions)
Step-by-step explanation:
10x^2 - 6x + 4 = -3x
Add 3x to both sides
10x^2 - 6x + 4 + 3x = -3x + 3x
10x^2 - 6x + 4 + 3x = 0
Add like terms
10x^2 - 3x + 4 = 0
We have to use quadratic formula to find the answers
For this equation, a = 10, b = -3 and c = 4
Note: +/- is plus or minus
Quadratic formula:
x = (-b +/- sqrt(b^2 - 4ac)) / 2a
x = (-(-3) +/- sqrt(-3^2 - 4(10)(4))) / 2(10)
x = (3 +/- sqrt(9 - 160)) / 20
x = (3 +/- sqrt(-151) / 20
x = (3 +/- i*sqrt(151) / 20
if there's a "-" sign inside a square root, it will give you an imaginary number.
Example:
-sqrt(9) = -3
sqrt(-9) = 3i (first you will ignore the "- " sign, then square the number. After finding the square root, take that '-' sign and turn it to an "i")
So for sqrt(-151), 151 is not a perfect square, so you will get a decimal number. Leave it as it is:
sqrt(151). We can't forget about the "-". Turn the minus into a sign.
It will be i*sqrt(151)
Imaginary numbers can't be simplified, so this is the answer.
(3 +/- i*sqrt(151) / 20
the sum of three numbers is 131. the third number is 4 times the first. the second number is 5 more than the first. what are the numbers
Step-by-step explanation:
let the numbers are:
a, b, and c
the equation would be:
a+b+c = 131
c = 4a
b = a+5
=>
a + a+5 +4a = 131
6a +5 = 131
6a = 131-5
6a = 126
a= 126/6
a = 21
b = a+5 = 21+5
b = 26
c = 4a = 4(21)
c = 84
What is remainder when x3 2x² X 1 is divided by x 1?
When x^3+2x^2+x+1 is divided by (x+1) then remainder is 1.
In the given question, we have to find what is remainder when x^3+2x^2+x+1 is divided by (x+1).
To find the remainder there are two ways. First we divide the x^3+2x^2+x+1 by (x+1). Second we find the value of from (x+1) by equating (x+1) equal to zero. The put the value of x in the expression x^3+2x^2+x+1.
In this we ca easily find the remainder.
Now we firstly find the value of x;
(x+1) = 0
Subtract 1 on both side we get;
x= −1
Now put x= -1 in the expression x^3+2x^2+x+1.
x^3+2x^2+x+1 = (−1)^3+2(−1)^2+(−1)+1
x^3+2x^2+x+1 = −1+2−1+1
x^3+2x^2+x+1 = 1
Hence, when x^3+2x^2+x+1 is divided by (x+1) then remainder is 1.
To learn more about division of polynomial link is here
brainly.com/question/29718477
#SPJ4
The right question is:
What is remainder when x^3+2x^2+x+1 is divided by (x+1)?
Find the value of x for which l is parallel to m. The diagram is not to scale.
The value of "x" for which the line "l" is parallel to the line "m" is 31°.
The line "l" is parallel to the line "m". The top angle is 31°. The middle angle is 62°. We need to find the measure of angle "x".
We will extend the upper line to intersect the line "m". This will form a triangle. The lower left angle of the triangle is 31° using the property that the alternate interior angles are equal. The top angle of the triangle is found using the linear pair property. The top angle of the triangle is 180°–62° = 118°.
Now we will apply the angle sum property to the triangle. The sum of all the angles of a triangle is 180°.
31° + 118° + x° = 180°
149° + x° = 180°
x = 31°
To learn more about angles, visit :
brainly.com/question/28451077
#SPJ1
Find an equation of the tangent plane to the surface represented by the vector-valued function at the given point.
r(u,v) = ui + vj + √(uv)k (1,1,1)
The equation of the tangent plane to the surface represented by the vector-valued function at the point (1,1,1) is x - 2y - 2z + 1 = 0.
To find the equation of the tangent plane, we need to find the partial derivatives of the vector-valued function with respect to u and v, and evaluate them at the given point (1,1,1):
r(u,v) = ui + vj + √(uv)k
∂r/∂u = i + (1/2√(uv))k
∂r/∂v = j + (1/2√(uv))k
Now we evaluate these partial derivatives at the point (1,1,1):
∂r/∂u(1,1) = i + (1/2)k
∂r/∂v(1,1) = j + (1/2)k
The normal vector to the tangent plane is the cross product of these partial derivatives:
n = ∂r/∂u × ∂r/∂v = i × j + (1/2)i × k + (1/2)j × k = -k + (1/2)i + (1/2)j
So the equation of the tangent plane at the point (1,1,1) is:
-k + (1/2)i + (1/2)j = -(x-1) + (1/2)(y-1) + (1/2)(z-1)
Simplifying, we get:
x - 2y - 2z + 1 = 0
Therefore, the equation of the tangent plane to the surface represented by the vector-valued function at the point (1,1,1) is x - 2y - 2z + 1 = 0.
To learn more about vector, click here:
https://brainly.com/question/29740341
#SPJ11
3/4 divided by 1/3 plz I need it
Answer:
0.25
Step-by-step explanation:
Geometryyyyyyy help ASAP
Answer:
KM=LN is given, LN=LM+MN Segment addition postulate, KL=MN because the transitive property of equality
Step-by-step explanation:
the first blank is always given for the future